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ON EMBEDDING OF INTEGRABLE EQUATIONS IN (1 +1)
AND (2 + 1) DIMENSIONS INTO THE GENERALIZED SELF-DUAL
YANG — MILLS EQUATIONS

A.D.Popov

The generalization of the self-dual Yang — Mills (SDYM) equations ou the
spaces of arbitrary even dimension is considered. Itis shown that all integrable
equations in (1 + 1) dimensions and many inicgrable equations in (2 + 1) di-
mensions may be obtained by the reduction of the generalized SDYM equations.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.

O BroXeHMH HHTErPUpYEMHIX ypasucnuit B (1 +1)
u (2+ 1) usmepenunsx B 0606WICHHKE ypaBHEHMS
ABTOAYANBHOCTH MoaAcaM Anra — Muaaca

A.l.HHonos

Pacceorpeno 0foGmenwe ypasneuwit asToayamsnocT™H mopenm Sura —
Muanca Ha IPOCTPANCTER MPOUIBOALHON HETHOR pasmeprocTy. [loxazano, uto
BCE uHTErpHpyeMnie vpasuenu s (1 + 1) wamepenmsx w MHOMME MHTErPUpYe-
M€ ypasueHud s (2 + 1) uanepernux Moryr Gume nonywema peayxumeit 0606-
IEHHBIX YPABHEHHI ABTOAYANRHOCTH mopcan Sura — Mwanca.

Pa6ora suinonsena s JlaGoparopum reoperivecxoii puzmxn OMAN.

1. It is known, that many integrable equations in (1+1) dimensions may
be embedded into the SDYM equations in d = 4 dimensions (see, ¢.g., [1—
7). This is connected with the fact that SDYM equations may be written as
a compatibility condition of two linear cquations with the spectral parameter
A € C [8]). Imposing symmetries and algebraic constraints to the fields
involved permits one to reduce SDYM equations to the Korteweg — de Vries
(KdV) equations, generalized nonlinear Schrodinger (NLS) equations,
Boussinesq and many others having a zcro curvature represeniation

o U@) — o V(1) + IUQR), V1)1 =0.
Here matrices U and V are polynomials of 4 of degree not higher than a se-
cond, or functions of 1+l (chiral models, for example). Clearly, the deri-
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vative NLS equations, the Landau — Lifshitz equations and many others,
having another type of dependence on spectral parameter, can’t be embed-
ded into the d = 4 SDYM equations. The hierarchies generated by the equa-
tions considered in [2,6 ] (KdV, NLS, AKNS, DNLS and other hierarchies)
also are not embedded into them. That is why the SDYM equations in
d = 4 can’t play the role of the universal integrable system.

2. To solve these problems, it was suggested to consider the generalized
SDYM equations for d > 4. Such equations were considered by Salamon [9],
Ward [101], Galperin, Ivanov, Ogievetsky and Sokatchev [11 ] and by many
others. The main progress was made by considering the self-duality equa-
tions in d = 4n, in which the hierarchies of KdV, NLS, DNLS, AKNS and of
other equations may be embedded [2,6 ].

It is interesting to note that the geometric definition of self-duality in
terms of linear systems and complex structure on R ** (see [9—11)) are
equivalent to the algebraic definition of self-duality (see, e.g., [12—15D. It
was pointed by Strachan [6 ], how one may embed a number of hierarchies
in (2 + 1) dimensions into these equations. But in all these approaches one
obtains only the rational dependence on the spectral parameter A, and it is
not clear how to include into consideration the models with the spectral
parameter A that beiongs to the surfaces of genus g = 1. That is why such
important equation as Landau — Lifshitz equation [16] is out of conside-
ration. : '

We shall show a way to overcome this difficulty.

3. Method of solving of SDYM equations in d = 4 is connected with the
ideas of the twistor theory [17]. The SDYM equations in d = 4k are con-
nected with the twistor theory for 4k-dimensional hyper-Kihler manifolds
[9—11,18 ). Further generalization of the twistor theory (and of the self-
duality equations) was considered in [19].

So for any Riemannian even-dimensional manifold M 2" we may
consider a bundle j (M 2") of the Riemannian almost complex structure with
fibers F = SO(2n)/ U(n). The idea of the papers (19 ]is that we may choose
as a twistor manifold a submanifold Z in j M 2") with fibres -
B C SO(2n)/ U(n). In these papers the case of B = G/H and, in particular,

of B=CpP!= Sp(1)/U(1) is considered as an example. But as B we may
also choose the Riemannian surfaces of genus g = 1, and, in particular, the
elliptic curves. They are embedded into the fibres SO(2n)/ U(n) withn =2 3
over the 2n-dimensional Riemannian manifold. We may use this fact.

Let us consider the flat case of R 2" and j(R 2") = R " x F. We have a
bundle j(R 2"') - F, where F = SO(2n)/U(n). This is a canonical universal -
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complex bundle, geometry of which is well known (see, €.g., [20]. The
fibre C J" over a point J € F is identified with the complex vector space

(R g ) of dimension n. Let us consider for simplicity one coordinate patch
on F. Coordinates on it we may identify with the antisymmetric n X n mat-
rices J = (J b"), a, b,...=1,...n These matrices parametrise a complex

2My > Fover the point J, and define

2n

structure on the fibres of the bundle j(R
the antiholomorphic vector fields 4/9z “(/) on R
et Al S
%) 0z9U) 9z% % 9z
2n

and 9 ,-operator:

a

3, =dz%U) 5

where 2% = x® + %, (x“, %) are coordinates in R ", and z“ are coordinates
on CO”. Clearly, 5,2 =0.

Consider the trivial Hermitian vector bundle E over the Euclidean space

R associated with the principal G-bundle over R 2", with connection

which components are identified with the Yang — Mills (YM) potentials
Al y very A2". We shall denote by y the sections of the bundle E, which is the

2 21y They are

pull-back of the bundle E over R “" to the manifold j(R
functions y(x, J) on j(R ") depending on x € R >, J € F and taking values
in the space of complex representation (e.g., C Ny of the algebra §.

Connection on a complex bundle E can be used to lift the operators § ;

from R 2" 1o j(R *"). We can introduce the structure of the holomorphic

vector bundle in E identifying the operator 3 on E @ = 0) with the (0,1)-

2n

component D of the connection on j(R “"). In coordinate, a section y of the

bundle E is holomorphic if
b e b '
@,+J,0,+B, +J/ B)y(xJ)=0, V)]

2 wxd) =0, 3
a7

-1/2 . —-1/2 . 3b.
where Bl =2 (Al - 1A2), very Bn =2 (A2n_l - 1A2n), Ja is a comp-
lex conjugation for Jab. Condition (3) is equivalent to the choice of complex
coordinates on the manifold F and Egs. (3) may be trivially satisfied for y

depending on Jab and not depending on .7ab. The linear equations (2),
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defining the holomorphic structure in the bundle E, put some restrictions on
the gauge fields B,

The compatibility condition of Egs.(2) has a form:

c c c;d _
FEB+JaFcB_" F—+Ja"chd_O’ 4)

b" ca
where

Fab = aaBb - abBa + [Ba’ Bb I FcB = OcBB - 6530 + [Bc’ BB I,

Fip5=(F ) Fop= (Fgp).
By definition, Egs.(4) are the generalized self-duality equations for the
gauge fields in R 2n
Now everything reduces to the choice of independent components Jab.
By different choices of Jab we shall obtain different linear systems, different

self-duality equations and the embeddings of different integrable equations
into the generalized self-duality equations (4).

Letus choose, for example, n = 2k and d = 2n = 4k. Replaceaq, b, ... by
Wi, vj),..., whereu,v,...=1,2; iyj,...=1,... k. Put

0D = 3% & -
J(/”.’) —18/':6'[’., 5

where e% = —e; =1,AeCP! Then Egs.(2) are reduced to the equations
(Exi + Aayi +C,+AD)y =0, (Eyi - Aaxi + D, - AC)y =0, (6)

where 9, = 9 p ay =0, Cl. = B“., Dl. = 82’., i=1,.., k. Let

i i

ayiw B —gxinw, ax,'w = 3yi“'/’, @
and oyzp =D;=C;=0when | < /<< k. Then linear system (6) is redu-

ced to the systems, considered in [2,6 .

Now let
) —gvys
10”.) = é”Jl. . 8)
where le = —121 = JI2, "13 = —131 = 13, ey Jlk = —Jkl = nk, and other Jij

equal zero. Then we have
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A e A _
Q,u +x a;¢A+B;¢l + 7 B”A)w_o,

2 - 2 _
(0'“2 -n 0/41 + B/‘2 -n Bm)tp =0, ©)

k = k _
(Uﬂk—n am +B’“k—n B/‘l)w-—(),

where A =2, ..,k Let ¥ = 5”2111 =..= 5/‘,(1;'_ =0, B;d = B/‘2 =.,.=

= E/‘k = 0. Then Egs. (9) are reduced to the equations, introduced by Ward
[10}):

A - A _
(@, +779, .+ B, +2a"B Jy=0 (10)
A o A _
(0, +n 00 + By, +27B, Jp=0

where 9, = 3“, 9, = 521.

Finally, in (10) let 2# =fA(A), where /4 are functions of A € C. It
means that we consider one-dimensional complex submanifold B in the base

F of the bundle j(R 2"y > Fand the restriction Z = AR 2")IB of this bundle

on B. Then Egs. (10) will define the holomorphic structure in the bundle E
over the twistor manifold Z.
We may embed the equations of any integrable model in (1 + 1) dimen-

sions in Egs.(10) if we put aMt/' = 0, choose the functions fA(/I), matrices

B”A, E/‘A and a number & (d = 4k). For cxample, the Landau — Lifshitz

equations may be obtained as a particular case of Egs. (10) when k = 7.

If we take ay =00 0¥ = 0, Iy = O wheni # &, 6ytp # 0 and choose

x4 =AA'I, then Eqs.(10) coincide with the equations of the integrable
models in (2 + 1) dimensions, introduced in [6 ]. It is not clear now whether
all the integrable equations in (2 + 1) dimensions may be embedded into
Egs.(10) or not. Apparently, this may be done if one will use the infinite
dimensional Lie algebras (sce, e.g., [5,21]). In any case, all integrable
cquations in (2 + 1) dimensions and many integrable equations in (2 + 1)
dimensions can be obtained upon appropriate reduction of the generalized
SDYM equations (4).
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